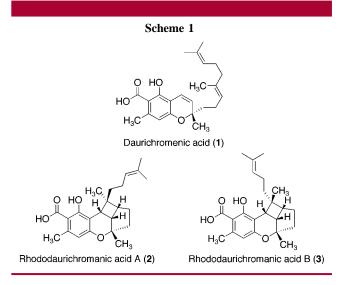
2003 Vol. 5, No. 23 4481–4484

Total Synthesis of the Highly Potent Anti-HIV Natural Product Daurichromenic Acid along with Its Two Chromane Derivatives, Rhododaurichromanic Acids A and B

Ying Kang, Yan Mei, Yuguo Du, and Zhendong Jin*

Division of Medicinal and Natural Products Chemistry, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242 zhendong-jin@uiowa.edu


Received September 16, 2003

ABSTRACT

The highly potent anti-HIV natural product daurichromenic acid was successfully synthesized in only five steps with 49% overall yield. The key step in the synthetic strategy involves a microwave-assisted tandem condensation and intramolecular S_N2' -type cyclization to form the 2H-benzopyran core structure.

Two novel chromane derivatives rhododaurichromanic acids A (2) and B (3) were isolated from the leaves and twigs of *Rhododendron dauricum*, a plant that is distributed in the northern part of China, the eastern part of Siberia, and Hokkaido, Japan (Scheme 1).¹ A known natural product, daurichromenic acid (1), was also isolated from the same plant.² The absolute structures of these three compounds were determined on the basis of extensive spectroscopic examination and X-ray crystallographic analysis.¹ Daurichromenic acid (1) belongs to the family of chromene natural products and demonstrates highly potent anti-HIV activity in acutely infected H9 cells with an EC₅₀ value of 5.67 ng/mL and therapeutic index (TI) of 3710. Rhododaurichromanic acids A (2) also showed relatively potent anti-HIV activity with an EC₅₀ value of 0.37 mg/mL and a TI of 91.9. These two

compounds represent a new class of anti-HIV agents and are attractive synthetic targets.³

⁽¹⁾ Kashiwada, Y.; Yamazaki, K.; Ikeshiro, Y.; Yamasishi, T.; Fujioka, T.; Mihashi, K.; Mizuki, K.; Cosentino, L. M.; Fowke, K.; Morris-Natschke, S. L.; Lee, K.-H. *Tetrahedron* **2001**, *57*, 1559.

⁽²⁾ Jpn. Kokai Tokko Koho, JP 82-28,080, 1982.

To supply sufficient quantities of the target material for pharmacological study, highly efficient syntheses of these complex molecules are required. Our careful analysis of the targets has led to a synthetic strategy that is characterized by the following important features: (1) convergency, (2) brevity, and (3) flexibility. Our retrosynthetic analysis of daurichromenic acid (1) is outlined in Scheme 2. Sequential

disconnection at O1–C2 and C4–C9 reveal fragments $\bf 5$ and $\bf 6$ as two starting materials, with tandem condensation and intramolecular S_N2' -type cyclization playing crucial roles in the synthetic strategy.

Synthesis of 2*H*-benzopyrans (chrom-3-enes) has been the subject of many investigations.⁴ The reaction developed by Shigemasa appeared to be quite promising for the synthesis of this class of natural products.⁵ Unfortunately, we found that the reaction between **6** and **5**⁶ was extremely slow under Shigemasa's conditions. The mixture gave only 15% yield of the desired product **7** after being heated at reflux for 4 days (Table 1, entry 1). The yield was improved to 32% when the mixture was heated at 90 °C in a sealed tube for 1 day (entry 2). However, the reaction stopped, and the yield could not be improved even with the addition of excess aldehyde **5** and longer heating time.

Because the intramolecular $S_{\rm N}2'$ -type cyclization is a fast reaction, the overall slow reaction is presumably due to the high activation energy in the condensation reaction. It is

Table 1. Various Conditions for the Formation of 2*H*-Benzopyran, the Core Structure of Daurichromenic Acid

entry	conditions	yield
1	5 (1.2 equiv), Ca(OH) ₂ (0.83 equiv),	15%
	MeOH, reflux, 4 days	2001
2	5 (1.2 equiv), Ca(OH) ₂ (0.83 equiv),	32%
	MeOH, sealed tube, 90 °C, 1 day	000/
3	5 (1.2 equiv), $Ca(OH)_2$ (0.83 equiv),	23%
	MeOH, microwave irradiation, 3×1 min	
4	5 (1.2 equiv), CaCl ₂ ·2H ₂ O (0.83 equiv),	50 %
	NEt ₃ (3.32 equiv), EtOH, microwave	
	irradiation, 20×1 min	
5	5 (1.2 equiv), CaCl ₂ •2H ₂ O (0.83 equiv),	<5%
	NEt ₃ (3.32 equiv), EtOH, reflux, 2 days	
6	(i) 5 (2.0 equiv), CaCl ₂ ·2H ₂ O (0.83 equiv),	70%
	NEt ₃ (3.32 equiv), EtOH, microwave	
	irradiation, 20×1 min;	
	(ii) 5 (1.0 equiv), microwave irradiation,	
	$20 \times 1 \text{ min}$	
7	5 (2.0 equiv), pyridine, microwave irradiation,	<5%
	25 min	

known that microwave irradiation can accelerate many reactions. Thus, we decided to investigate the possibility of applying microwave irradiation to accelerate our tandem condensation and intramolecular S_N2' -type cyclization.

As expected, a much faster reaction was indeed observed when the reaction was irradiated in a microwave oven.8 After only 3 min of irradiation, compound 7 was isolated in 23% yield (entry 3).9 However, we were not able to improve the yield with longer irradiation time or with the addition of more aldehyde 5. After screening a few different reaction conditions, we found that the reaction between 5 and 6 in the presence of CaCl₂•2H₂O, NEt₃, and EtOH provided 50% yield of the desired product 7 and required only 20 min of microwave irradiation (entry 4). Without microwave irradiation, the yield of compound 7 was only 5% (entry 5). The optimized conditions were listed in entry 6 in which the mixture of compound 5 (2.0 equiv) and compound 6 (1.0 equiv) was irradiated for 20 min. Then, an additional 1.0 equiv of compound 5 was added and the mixture was irradiated again for 20 min. Using these optimized conditions allowed compound 7 to be isolated in 70% yield. It should be noted that in the absence of CaCl₂·2H₂O, NEt₃, and EtOH, only a trace amount of compound 7 was isolated when the reaction was run in pyridine (entry 7).¹⁰

Unfortunately, the hydrolysis of the ester functionality of compound 7 to daurichromenic acid (1) proved to be extremely difficult. After examining many procedures, 11 we

4482 Org. Lett., Vol. 5, No. 23, 2003

⁽³⁾ For the synthesis of rhododaurichromanic acids A and B and methyl daurichromenic ester, see: Kurdyumov, A. V.; Hsung, R. P.; Ihlen, K.; Wang, J. *Org. Lett.* **2003**, *5*, 3935.

^{(4) (}a) Dotz, K. H. *Pure Appl. Chem.* **1983**, *55*, 1689 and references therein. (b) Henry, G. E.; Jacobs, H. *Tetrahedron* **2001**, *57*, 5335. (c) Chang, S.; Grubbs, R. H. *J. Org. Chem.* **1998**, *63*, 864. (d) Saimoto, H.; Yoshida, K.; Murakami, T.; Morimoto, M.; Sashiwa, H.; Shigemasa, Y. *J. Org. Chem.* **1996**, *61*, 6768. (e) North, J. T.; Kronenthal, D. R.; Pullockaran, A. J.; Real, S. D.; Chen, H. Y. *J. Org. Chem.* **1995**, *60*, 3397. (f) Gabbutt, C. D.; Hartley, D. J.; Hepworth, J. D.; Heron, B. M.; Kanjia, M.; Rahman, M. M. *Tetrahedron* **1994**, *50*, 2507. (g) Cruz-Almanza, R.; Perez-Flores, F.; Lemini, C. *Heterocycles* **1994**, *37*, 759. (h) Rao, U.; Balasubramanian, K. K. *Tetrahedron Lett.* **1983**, *24*, 5023. (i) Sartori, G.; Casiraghi, G.; Bolzoni, L.; Casnati, G. *J. Org. Chem.* **1979**, *44*, 803.

⁽⁵⁾ Saimoto, H.; Yoshida, K.; Murakami, T.; Morimoto, M.; Sashiwa, H.; Shigemasa, Y. J. Org. Chem. 1996, 61, 6768.

⁽⁶⁾ Compound 5 was readily prepared via MnO₂-mediated oxidation of *trans,trans*-Farnesol (70%).

⁽⁷⁾ For a recent review on microwave-assisted reactions, see: (a) Caddick, S. *Tetrahedron* **1995**, *51*, 10403. (b) Galema, S. A. *Chem. Soc. Rev.* **1997**, *26*, 233.

⁽⁸⁾ We simply use a commercial household microwave to run the reaction. It is a Panasonic model NNS740 (1200 W).

⁽⁹⁾ Reaction was carried out in a sealed 60 mL Teflon pressure vessel (purchased from Savillex Corp) filled with Argon.

⁽¹⁰⁾ Subburaj, K.; Trivedi, G. K. Bull. Chem. Soc. Jpn. 1999, 72, 259. (11) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; John Wiley: New York, 1999.

found that the best conditions (3 M NaOH in MeOH/ H_2O at 40 °C for 4 days) provided daurichromenic acid (1) in only 40% yield. Although this two-step total synthesis is highly concise, the low yield in the hydrolysis step coupled with the expensive starting material 6 led us to investigate the possibility of conducting microwave-assisted reaction using carboxylic acid as the substrate.

The revised approach is outlined in Scheme 5. Formylation of orcinol **8** with POCl₃ and DMF gave aldehyde **9** (98%), ¹² which was oxidized to the corresponding carboxylic acid **10**

(NaClO₂, 99%).¹³ However, microwave irradiation of the mixture of compounds 10 and 5 failed to provide any desired product 1. Therefore, we decided to synthesize β -trimethylsilvl ethyl ester 11 that can be easily converted to carboxylic acid in the end. Reaction of 10 with 2-(trimethylsilyl)ethanol under Mitsunobu conditions afforded ester 11 in 90% yield.¹⁴ A mixture of compound 11, aldehyde 5 (2 equiv), CaCl₂·H₂O, NEt₃, and EtOH was sealed in a Teflon pressure vessel and irradiated in a microwave oven 20 times for 1 min intervals. The desired product 12 was isolated in 60% yield. 15 Treatment of compound 12 with TBAF gave daurichromenic acid in 95% yield. 16 Compound 1 was irradiated with a lowpressure mercury lamp for about 5 days to afford a mixture of rhododaurichromanic acids A (40%) and B (20%). 17 The physical data of synthetic daurichromenic acid are identical to those reported by Kashiwada, whereas the physical data of rhododaurichromanic acids A and B are identical to those reported by Hsung et al.18

In conclusion, we have successfully developed highly efficient total syntheses of daurichromenic acid and rhododaurichromanic acids A and B. We have demonstrated the versatility of microwave technology in the synthesis of 2*H*-benzo[*b*]pyrans (chrom-3-enes). The synthetic application of microwave technology in the synthesis of designed analogues and in the solid-phase combinatorial synthesis is currently underway in our laboratories and will be reported in due course. Furthermore, the highly potent anti-HIV activity of these molecules suggests an exciting adventure into the realms of investigations of molecular design, chemical synthesis, and biological activity.

Acknowledgment. We are indebted to the American Cancer Society for generous support of our research (Re-

Org. Lett., Vol. 5, No. 23, **2003**

search Project Grant RPG-00-030-01-CDD), to the China Scholarship Council for providing a fellowship to Y. Kang, and to The Center for Biocatalysis and Bioprocessing at the University of Iowa for providing a fellowship for Y. Mei. We thank Professor John P. N. Rosazza for helpful discussions.

Supporting Information Available: Complete spectroscopic data for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL030109M

Org. Lett., Vol. 5, No. 23, **2003**

⁽¹²⁾ Xie, L.; Takeuchi, Y.; Cosentino, L. M.; McPhail, A. T.; Lee, K.-H. *J. Med. Chem.* **2001**, *44*, 664.

⁽¹³⁾ Nicolaou, K. C.; Rodríguez, R. M.; Mitchell, H. J.; Suzuki, H.; Fylaktakidou, K. C.; Baudoin, O.; van Delft, F. L. *Chem. Eur. J.* **2000**, *6*, 3095

⁽¹⁴⁾ Roush, W. R.; Coffey, D. S.; Madar, D. J. J. Am. Chem. Soc. 1997, 119, 11331.

⁽¹⁵⁾ Control reactions (heating in either reflux or in a sealed tube) appeared to be extremely slow without microwave irradiation.

⁽¹⁶⁾ All compounds have been fully characterized.

⁽¹⁷⁾ Based on recovered starting material.

⁽¹⁸⁾ Hsung noted that there were three critical typos in the ¹³C NMR of rhododaurichromanic acids A and B reported by Kashiwada. See Supporting Information of Hsung's paper: Kurdyumov, A. V.; Hsung, R. P.; Ihlen, K.; Wang, J. *Org. Lett.* **2003**, *5*, 3938.